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 Abstract 

The performance of machine learning classification models is strongly influenced by 
training dataset size. This study analyzes how varying sample sizes affect five 
popular classifiers: Logistic Regression, Decision Tree, Random Forest, Support 
Vector Machine (SVM), and Naïve Bayes. Using simulated datasets from 50 to 
5,000 samples, models were evaluated on Accuracy, Precision, Recall, and F1-score. 
Results show that all models improve with more data, but sensitivity to sample size 
differs. Logistic Regression and SVM perform consistently well across sizes, while 
Naïve Bayes excels even with limited data. Decision Trees are unstable with small 
datasets but improve notably with larger samples. Random Forests improve 
gradually, achieving competitive results at scale. These insights guide practitioners 
in choosing appropriate algorithms based on data availability, highlighting the need 
to match model complexity to dataset size for optimal performance. 
 

Keywords 
Machine Learning, 
Classification Algorithms, 
Sample Size, Predictive 
Performance, Accuracy. 
 
 
Article History  
Received: 01 January, 2025 
Accepted: 21 February, 2025 
Published: 31 March, 2025     
 
Copyright @Author 
Corresponding Author: * 
Roidar Khan 

 
INTRODUCTION 
Machine learning is an explosive technology that has 
taken root in many disciplines, such as healthcare, 
finance, marketing, and artificial intelligence. With a 
widening range of possibilities in predictive modeling, 
the need to understand what factors determine the 
effectiveness and consistency of machine learning 
algorithms also grows. Among the most basic of them 
is the sample size, the amount of available data in the 
model training. The idea that bigger data may provide 
better reflections of the actual distribution of the data 
is well known, thus allowing the models to more 
accurately generalize it. But the dependence of the 
sample size and the model performance is not linear 
and consistent across various classification algorithms; 
hence, it is an important topic covered in empirical 
studies. Any model of classification has this intrinsic 
relationship between the predictive power of the 

models and the size and quality of training data. A 
smaller dataset tends to overfit in a more complex 
model or underfit in a simpler model, and this will 
decrease the ability of the model to generalize. More 
data sets, on the other hand, minimize variants and 
biases and cost data collection, storage, and 
processing. As a result, it is important to know how 
various algorithms react to the variations in the 
sample size, especially in fields where large datasets are 
difficult, time-consuming, and rather expensive to 
acquire. 
Whether in the classical world of statistics or, 
fortunately, in the new world of machine learning, a 
large body of literature exists on the effect of sample 
size on the performance of a classifier. Kuhn and 
Johnson (2013) underline that higher data is generally 
associated with a decrease in generalization error, but 
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the specific reaction to an algorithm depends on it. 
Dietterich (1995) and Hastie et al. (2009) observed 
that high-capacity models such as neural networks and 
support vector machines (SVMs) need a lot of data to 
perform optimally since they tend to overfit during 
low-data conditions. Conversely, simpler models, such 
as logistic regression and naive Bayes, have proven to 
be more consistent with small or moderate training 
data. According to Ng and Jordan (2002), they 
discovered that although naive Bayes is likely to 
perform better than logistic regression at very small 
sample sizes, on the other hand, the latter performs 
better than the former as more data is available. 
Decision trees and random forests are also tree-based 
techniques that have been explored in this area. 
Breiman (2001) pointed out the soundness of random 
forests, particularly on high-dimensional data, but 
their output remains strongly pegged on the 
sufficiency of the sample. Decision trees have minimal 
training time, an intuitive nature, high variance with 
small samples, and they are generally unstable unless 
this is reduced by pruning or ensemble methods 
(Quinlan, 1996). A study done by Van der Ploeg et al. 
(2014) and Cawley & Talbot (2010) warned about 
over-fitting model performance, especially in small 
data settings, a reason why regularization and proper 
validation methods should be used. 
Raudys and Jain (1991) made further contributions, 
aimed at applying classification to small sample 
environments, and described methods of estimating 
reliable performance, which is applicable in sensitive 
areas such as the medical field, where large sets of data 
may not be possible. The broader perspective was 
provided by Gholamy et al. (2018), which revealed 
that accuracy begins to decrease at higher sample 
thresholds and added that the algorithm selection was 
to be more decisive when sample sizes were small. 
Although these are all rich insights, it must be noted 
that a significant amount of the existing research 
works either analyze a specific model or analyze 
performance output of the individual models on 
specific cloud-based datasets, hence the overall 
generalizability of these findings. A conspicuous 
absence of comparable simulation-based 
examinations of sundry classifiers in a general 

collection of sample sizes with normalised 
performance measures still exists.  
The proposed paper will address the said gap by 
evaluating the accuracy, precision, recall, and F1-score 
of five common classification algorithms, logistic 
regression, decision trees, random forests, support 
vector machines, and naive Bayes, with increasing 
sample size of 50-5000 in a systematic way. The aim is 
to determine which models are best able to handle 
both small-data and large-data regimes, which are best 
suited to larger training sets, and which will provide 
actionable details to the researchers and practitioners 
in the discipline who might have limited data 
available, as well as those who might have plenty of 
data available. 
  
2.1 Experimental Framework for Model 
Comparison 
This section explains the outline of the experimental 
setup that we employed to analyze the effects of the 
sample size on the classification performance of 
machine learning models that have been selected. It 
was established that the paper used simulated data to 
guarantee the control of class distribution, feature 
relevance, and sample scalability. Only five 
classification algorithms are compared: Logistic 
Regression, Decision Tree, Random Forest, Support 
Vector Machine (SVM), and Naive Bayes. The 
selection of these models was dictated by their 
applicability and popularity, and the fact that they 
represent different learning paradigms, such as linear, 
probabilistic, kernel-based, and ensemble methods. In 
order to determine the impact of the amount of 
training data, there were eight different sample sizes 
created, which include 50, 150, 200, 300, 600, 1000, 
2000, and 5000 data sets. This continuum spans low-
resource to high-resource settings. The same 
experimentation procedure was adopted in each 
sample size to provide consistency. Four metrics, 
including Accuracy, Precision, Recall, and F1-score, 
were used to determine the performance of the model 
to provide an overall view of predictive performance 
and reliability of the classification result. 
 
 



INTERNATIONAL JOURNAL OF ENGINEERING 
RESEARCH  
Volume 2, Issue 1, 2025 
 

engineeringresearch.net                                        | Khan, 2025 | Page 83 

2.2 Data Simulation, Sampling Strategy, and 
Evaluation Process 
The datasets that have been utilized in this paper have 
been produced by controlled simulation, which 
permits size and class balance to be easily 
manipulated. The simulated data offered the freedom 
of building binary classification tasks with standard 
distributions in all sample sizes. Stratified sampling 
ensured that there was equal representation of the 
class labels in the training sets, and this method was 
used in every case of model evaluation in order to 
maintain fairness in the assessment. There was no 
hyperparameter optimization, as the model was 
trained each time with its dataset. The models were 
then tested on a fixed test set, and their performance 
compared on four metrics: Accuracy (overall 
correctness), Precision (positive predictive value), 
Recall (sensitivity), and F1-score (harmonic mean of 
precision and recall). This whole process was achieved 
in R, with the data manipulation and analysis done 
using tidyverse, and visualisations were done with the 
ggplot2 package. This has a reproducible and 
repeatable framework that makes comparison of 
models and sample sizes easy, pointing to the 
classifiers that are reliable under low sample 
conditions and the classifiers that need large samples 
to work. 
 
3. Result 
The detailed comparison of the five widely applied 
classification algorithms (Logistic Regression, 
Decision Tree, Random Forest, Support Vector 
Machine (SVM), and Naive Bayes) is demonstrated in 
Table 4.1 based on four parameters (Accuracy, 
Precision, Recall, and F1-Score) relative to eight 
different sample sizes 
(50,100,200,500,1000,2000,3000, and 5000). 
 
3.1 Performance at Small Sample Size (n = 50) 
At the smallest sample size of 50, Logistic Regression, 
Random Forest, and Naïve Bayes each achieved 
identical performance metrics, accuracy of 0.643, 
precision of 0.571, recall of 0.667, and an F1-score of 
0.615, indicating their relative stability and ability to 
generalize reasonably well even with limited data. 
Support Vector Machine (SVM) also recorded the 

same accuracy (0.643) but showed a slight trade-off 
between precision (0.600) and recall (0.500), resulting 
in a lower F1-score of 0.545, suggesting it was more 
conservative in predicting positive classes but less 
effective at capturing all actual positives. In 
comparison, the Decision Tree model performed very 
poorly, having zero values in precision, recall, and F1-
score and an accuracy of only 0.571, meaning that it 
performed an inadequate job of predicting positive 
instances, which demonstrated its vulnerability to 
overfitting and unstable performance as trained on 
minutely small data. 
 
3.2 Performance at Moderate Sample Sizes (n = 150 
to 600) 
Logistic Regression and SVM perform well and 
robustly on all the sample sizes between 150 and 600, 
and the accuracy curves of both methods increase 
steadily, with Logistic Regression equally improving 
its F1-scores at a pace far slower than the SVM, 
performing error learning, as the sample size grows. 
Naive Bayes has very high recall across this range; its 
precision and F1-score are relatively insensitive to this 
range, all of which demonstrates that naive Bayes is 
very useful when it is necessary to identify statistically 
positive cases. Since Random Forest trails by the first 
few iterations when compared to Logistic Regression 
and SVM, it gains significant ground by the 600-
sample point with an accuracy of 0.722 and F1-score 
of 0.688, indicating that it is more favourable to utilize 
bigger datasets. In contrast, Decision Tree remains 
inconsistent, occasionally displaying high recall, such 
as 1.0 at 150 samples, but often with poor precision 
and F1-scores, reflecting its tendency to overfit and its 
vulnerability to fluctuations in small and moderately 
sized datasets. 
  
3.3 Performance at Large Sample Sizes (n = 1000 to 
5000) 
As the sample size increases to 1000 and beyond, all 
classification models exhibit notable improvements in 
both accuracy and F1-score, reflecting the benefits of 
enhanced generalization from larger datasets. Logistic 
Regression continues to perform strongly, reaching an 
accuracy of 0.746 and an F1-score of 0.752 at 5000 
samples, maintaining its consistent and reliable trend. 
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SVM slightly edges out Logistic Regression in terms of 
F1-score at 0.753, supported by high precision and 
recall, indicating its ability to leverage complex 
patterns in data more effectively when provided with 
a sufficient volume of training examples. Naive Bayes 
is also quite good, placing in the 0.758 F1-score, 
although this is made possible by their naive 
assumptions that features are independent, which is 
in sharp contrast to the naive assumption used by 
Bayes; it is resistant to violating its assumptions too 
sharply. Random Forest maintains consistent gains 

with accuracy and F1-score of 0.726 and 0.730, 
respectively, being achieved at the largest sample size, 
which, however, remains shy of the best ones, possibly 
because of the incapability of model to tune 
parameters or depth. Decision Tree shows a 
significant improvement after having to suffer with 
some smaller datasets, and is 0.753 accurate and 0.745 
accurate F1-score at 5000 samples, indicating that 
there simply has to be much more data to stabilize and 
generalize effectively. 

 
Table 4.1: Performance Metrics of Classification Models Across Varying Sample Sizes 

SampleSize Model Accuracy Precision Recall F1 
50 Logistic 0.643 0.571 0.667 0.615 
50 Decision Tree 0.571 0.0 0.0 0.0 
50 Random Forest 0.643 0.571 0.667 0.615 
50 SVM 0.643 0.6 0.5 0.545 
50 Naive Bayes 0.643 0.571 0.667 0.615 
150 Logistic 0.659 0.682 0.652 0.667 
150 Decision Tree 0.523 0.523 1.0 0.687 
150 Random Forest 0.523 0.545 0.522 0.533 
150 SVM 0.659 0.682 0.652 0.667 
150 Naive Bayes 0.591 0.609 0.609 0.609 
200 Logistic 0.593 0.556 0.385 0.455 
200 Decision Tree 0.559 0.0 0.0 0.0 
200 Random Forest 0.542 0.478 0.423 0.449 
200 SVM 0.593 0.571 0.308 0.4 
200 Naive Bayes 0.559 0.5 0.692 0.581 
300 Logistic 0.64 0.574 0.692 0.581 
300 Decision Tree 0.562 0.0 0.0 0.0 
300 Random Forest 0.618 0.571 0.513 0.541 
300 SVM 0.652 0.587 0.692 0.635 
300 Naive Bayes 0.64 0.569 0.744 0.644 
600 Logistic 0.728 0.693 0.667 0.68 
600 Decision Tree 0.567 0.0 0.0 0.0 
600 Random Forest 0.722 0.671 0.705 0.688 
600 SVM 0.717 0.68 0.654 0.667 
600 Naive Bayes 0.733 0.714 0.641 0.676 
1000 Logistic 0.705 0.707 0.7 0.703 
1000 Decision Tree 0.655 0.691 0.56 0.619 
1000 Random Forest 0.675 0.661 0.72 0.689 
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1000 SVM 0.71 0.706 0.72 0.713 
1000 Naive Bayes 0.685 0.687 0.68 0.683 
2000 Logistic 0.749 0.765 0.735 0.75 
2000 Decision Tree 0.694 0.663 0.819 0.733 
2000 Random Forest 0.699 0.712 0.691 0.701 
2000 SVM 0.739 0.736 0.765 0.75 
2000 Naive Bayes 0.742 0.759 0.725 0.742 
5000 Logistic 0.746 0.748 0.756 0.752 
5000 Decision Tree 0.753 0.729 0.762 0.745 
5000 Random Forest 0.726 0.733 0.727 0.73 
5000 SVM 0.745 0.741 0.766 0.753 
5000 Naive Bayes 0.75 0.748 0.768 0.758 

 

Figure 3.1, illustrating accuracy trends across 
increasing sample sizes, reveals that all five 
classification models show improvement as data 
volume grows, confirming that larger datasets 
enhance overall model performance. Logistic 
Regression displays a smooth, consistent upward path, 
increasing from an accuracy of 0.643 at 50 samples to 
0.746 at 5000, demonstrating its strong generalization 
and learning stability. SVM follows a closely aligned 
trajectory, starting at the same point and reaching 
0.745, slightly trailing Logistic Regression until their 
lines converge around 4000 samples. Naïve Bayes 
begins with a similar pattern but dips slightly between 
150 and 200 samples before recovering and eventually 

surpassing both Logistic and SVM, finishing at 0.750. 
This suggests it handles both small and large data 
effectively, but may be less stable in mid-range sample 
sizes. Random Forest starts weaker, showing a dip at 
150 and 200, then steadily improves after 300, 
reaching 0.726 by 5000, indicating it needs more data 
to perform competitively. Decision Tree shows the 
most erratic trend, beginning at 0.571, improving 
slightly at 200 and 300, dipping again at 600, but then 
sharply rising after 2000 to finish with the highest 
accuracy of 0.753. This irregular pattern confirms its 
high sensitivity to data size, with reliability emerging 
only in large-sample contexts. 

Figure 3.1: Accuracy Trends of Classification Models Across Varying Sample Sizes 
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 Figure 3.2, illustrating precision across increasing 
sample sizes, highlights how effectively each model 
identifies true positive cases from its predictions. 
Logistic Regression demonstrates a smooth and steady 
rise, beginning at 0.571 and gradually increasing to 
0.748, reflecting consistent and balanced learning. 
SVM follows a nearly identical path, with slightly 
higher precision values at several points and ending at 
0.741, showing its similarity in classification behavior 
to Logistic Regression. Naïve Bayes presents a more 
level trend, maintaining moderate precision 
throughout but improving after 300 samples, 
ultimately matching Logistic Regression at 0.748, 

indicating dependable though not leading 
performance. Random Forest starts with a lower value 
of 0.545 and dips further at 200 samples before 
gradually climbing to 0.733 at the highest sample size. 
Its slower progression suggests that more data is 
required for it to learn to make confident positive 
predictions. Decision Tree, in contrast, shows no 
precision in the early stages, remaining at 0.000 
through the first few sample sizes, before finally rising 
to 0.729 at 5000 samples. This late but significant 
increase reflects its initial weakness in identifying 
positives, with improvement only emerging once a 
substantial amount of training data is available. 

 

Figure 3.2: Precision Trends of Classification Models Across Varying Sample Sizes 
 
 Figure 3.3 illustrates how effectively each model 
identifies actual positive instances, as measured by 
recall, across increasing sample sizes. Naïve Bayes 
consistently performs best in this metric, starting at 
0.667 and rising to a peak of 0.768, with its line 
remaining above all others, indicating strong 
sensitivity to the positive class throughout. Logistic 
Regression follows a stable, gradually ascending trend 
from 0.667 to 0.756, with only minor dips around 
200 to 300 samples, after which it steadily recovers. 
SVM begins with the lowest recall among the top 
models at 0.500 but demonstrates a smooth, 
uninterrupted rise, overtaking Logistic Regression by 
1000 samples and finishing slightly ahead at 0.766. 

This upward curve indicates its increasing ability to 
generalize and capture positive cases as more data 
becomes available. Random Forest shows more 
fluctuation, with a brief decline between 150 and 200 
samples before regaining momentum and ending at 
0.727, still trailing behind the top performers. 
Decision Tree presents the most erratic recall pattern, 
with a sharp spike to 1.0 at 150 samples, followed by 
several zeroes through 600, and then a notable rise to 
0.762 at 5000. This irregular path highlights its 
unreliability on smaller datasets and reinforces the 
model’s need for large training volumes to function 
effectively. 
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Figure 3.3: Recall Trends of Classification Models Across Varying Sample Sizes 
 
F1-score plot(Table 3.4) provides a comprehensive 
measure of each model's overall classification 
performance by balancing precision and recall. Naïve 
Bayes achieves the highest F1-score at 0.758, reflecting 
its well-rounded ability to correctly and confidently 
classify positive cases, with an overall smooth upward 
trend despite minor fluctuations in the middle range 
of sample sizes. SVM demonstrates the most 
consistently rising trajectory, beginning at 0.545 and 
steadily increasing to 0.753, suggesting stable and 
dependable performance as sample size grows. 
Logistic Regression closely mirrors SVM, starting at 
0.615 and reaching 0.752, with its line remaining 

parallel to SVM's throughout, showing similarly 
strong and reliable behavior. Random Forest shows a 
slower rise in F1-score, with an early drop to 0.449 at 
200 samples before gradually improving to 0.730, 
indicating a slower learning curve and reliance on 
larger data volumes for competitive performance. 
Decision Tree, which executes poorly at smaller sizes 
with multiple points at zero, shows a sharp increase 
after 1000 samples and ultimately reaches 0.745 at 
5000. This significant late-stage improvement 
highlights its dependence on large datasets to stabilise 
and deliver effective classification results. 

 

Figure 3.4: Recall Trends of Classification Models Across Varying Sample Sizes 
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Conclusion  
To understand the effects of different sample sizes on 
the performance of five popular machine learning 
classification algorithms, namely Logistic Regression, 
Decision Tree, Random Forest, Support Vector 
Machine (SVM), and Naive Bayes, this study aimed to 
study how various sample sizes affect the performance 
of these algorithms working with simulated data. 
Considering the sample size of the model behavior on 
eight diverse sample sizes that vary between 50 and 
5000, the study indicates that the amount of training 
data is one of the factors that has a significant impact 
on defining the accuracy, precision, recall, and F1-
score of classification models. The findings show that 
Logistic Regression and SVM exhibit robust and 
consistently good performances even in almost all 
sample sizes, and both have performed consistently 
better in all measures of their performance. Naive 
Bayes also has an impressive performance, for those 
metrics that matter, especially in recall and F1-score, 
and it is worth it when early or sensitive detection of 
the positive class is needed. Surprisingly, it worked 
better than more complicated ways in terms of both 
low sample volumes and high sample volumes. 
Random Forest, which started out weakly, actually 
continued to strengthen its performance with bigger 
data sets, as shown; this compels the fact that it will 
only show its greatest predictive strength when 
volumes of data are abundant. Although Decision 
Tree was not reliable in the small-samples 
environment, the improvement in its performance 
was quite dramatic in the late stages, recording the 
best accuracy at 5000 observations. But its sensitivity 
to lower levels of data is a drawback that makes it 
impractical except when there are many training sets 
or when it is used with ensembles. 
On balance, this element-to-element comparison 
supports the popular belief that larger datasets are 
better in producing a predictive model, yet it is 
accompanied by the sensitivities to the data volume 
that are unique to algorithms. Certain models, 
including the Logistic Regression and Naive Bayes, are 
less sensitive to the paucity of data, whereas other 
models, like Decision Tree and Random Forest, 
require a larger amount of data in order to create 
steady and strong outcomes. The results provide 

sound advice to practitioners who have to choose 
algorithms in data-limited settings. 
 
Future Work and Recommendations 
Going forward, a number of relevant avenues can be 
followed up on the knowledge produced in the given 
study. Although the analysis presented in this paper 
was based on simulated data on binary classification, 
it is recommended in the future to use real data sets 
used in various fields, including healthcare, finance, 
or social sciences, since data quality and complexity 
can affect the model behavior in a different way. The 
extension of the analysis to the multiclass problems 
would be the next course of action that would help to 
better understand the when and how of sample size 
on the model performance in more difficult 
classification cases. Also, maybe a hyperparameter 
optimization of complex models such as Random 
Forest and SVM would be better to optimize and 
would work better in practice. The cross-validation 
method must also be used in future research to limit 
measurable bias in the performance of care, especially 
where sample size is low. The second potential field is 
the modeling done in a cost-sensitive, imbalanced 
scenario, where model accuracy is insufficient, and the 
false positive and false negative trade-offs have to be 
considered. Lastly, comparing the efficiency of each 
and every algorithm in terms of computation may be 
of practical essence to both researchers and 
practitioners who operate within resource-limited 
settings. Collectively, these extensions would help to 
pave a more realistic and in-depth interpretation of 
how machine learning models perform under the 
different conditions of data and under different 
decision situations. 
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