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 Abstract 
Modern software systems generate enormous volumes of log data to support 
monitoring and fault diagnosis, far exceeding the capacity of manual analysis. 
This paper proposes an architecture for detecting anomalous patterns in software 
logs using advanced machine learning and deep learning techniques, enabling 
proactive fault diagnosis and self- healing capabilities. Traditional rule-based 
approaches are inadequate for handling the scale and complexity of contemporary 
log data, whereas deep learning models such as Long Short-Term Memory (LSTM) 
networks and Transformer architectures excel at capturing contextual 
dependencies within log sequences. To address challenges such as limited labeled 
data, this study leverages self-supervised and contrastive learning methods. In 
addition, reinforcement learning and rule-based automation are incorporated to 
dynamically correct faults, thereby minimizing system downtime. The proposed 
models are evaluated on benchmark log datasets using metrics including precision, 
recall, F1- score, and AUC-ROC. Experimental results demonstrate that 
Transformer-based models achieve superior performance compared to 
conventional machine learning techniques, though at higher computational costs. 
Notably, self-healing mechanisms reduce downtime by up to 68.2%, underscoring 
the potential of AI to significantly enhance system reliability and availability. 
However, challenges such as model interpretability, computational efficiency, and 
real-time adaptability remain. This paper provides a state-of-the-art review of AI- 
based log anomaly detection approaches and outlines future research directions, 
emphasizing lightweight architectures, explainable AI, and scalable deployment 
as key enablers for advancing AI-powered anomaly detection and self-healing 
systems in safety-critical domains. 
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1. INTRODUCTION 
Current software systems have become complex 
and therefore need more advanced techniques in 
the monitoring and diagnosing. Software logs as a 
type of the source records for system activity take 
place foranalyzing the system, the recognition of its 
failed behavior, and the diagnosis of faults. 
Historically, the software log analysis could be 
done only with the help of manual examination 

as well as rules, whichperfectly fit into simple cases, 
yet fail to be reviewed as efficient in more complex 
and dynamic surroundings (He et al., 2016). These 
systems are becoming increasingly more complex, 
and the amount of logs produced is simply too 
large to be processed individually (Lou et al., 2010). 
To this end, researchers have employed AI and ML 
paradigms to automate anomaly detection in 
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software logs for early diagnosis of faults and 
creation of self-healing systems. 
Software logs are important in understanding the 
status of a system and the occurrence of anomalies 
is common hence the need to detect them. 
Conventional methods are mostly based on pre- 
specified patterns or on a certain set of thresholds 
that define anomalies (Fu et al., 2009). However, 
these approaches have several demerits like high 
false positives, lack of flexibility in adapting into new 
types of anomaly and difficulty in using the 
approach in different environments (He et al., 
2017). Thus, AI techniques have become a viable 
solution to learn these complex patterns using ML 
models and identifying anomalies in real-time (Du 
et al., 2017). Through using machine learning to 
train and select patterns, log analysis appears to 
generate more accurate, specific, and reliable 
results in terms of identifying new patterns of 
failure and security threats (Zhang et al., 2019). 
Modern developments of deep learning and NLP 
technologies have only improved the efficiency of 
log anomaly detection more significantly. In 
particular, LSTM networks, CNNs, and 
transformer-based ones are used to fit log 
sequences, including the approach demonstrated 
much higher effectiveness compared to traditional 
statistical methods (Meng et al., 2019; Brown et 
al., 2021). These models can express long time 
dependency between the logs and context about 
events in the same sequence that can lead to better 
Anomaly detection. Further, novel techniques of 
self- supervision have been proposed in order to 
enhance the results of AD in cases of lack of labeled 
data (Ren et al., 2022). Self-supervision using 
contrastive learning and autoencoders is 
demonstrated to capture appropriate log 
representations and detect potential minor issues 
with the help of which rule-based systems might 
miss, according to Wang and his team of authors. 
Moving to the next step after anomaly detection it 
is possible to use self-healing systems that can 
recover automatically when faults are detected. 
Self-healing mechanisms are the self-diagnostic 
ability of the system that allows for constant 
detection of failures and diagnosis of the problem 
together with proposing a solution towards the 

resolution of the problem with minimal system 
downtime (Ghosh et al., 2021). Such systems also 
use reinforcement learning and automated 
remedial steps to rectify any problem detected 
without the involvement of human beings (Chen 
et al., 2020). Ebrahimi et al. (2018) suggest that by 
introducing AI into the system, they are improved 
system availability and decreased maintenance 
expenses, particularly in the area of anomaly 
detection with self-healing properties. 
However, there are still some open issues with AI 
utilization in log analysis. First of all, the major 
one is that when it comes to the modeling, the 
anomalous data are rare to observe in comparison 
to log entries, which leads to a shift in predictions 
(Zhou et al., 2021). Furthermore, deep learning 
based anomaly detection models are difficult to 
interpret though deep learning algorithms are 
powerful neural networks which make it 
challenging for operators to comprehend and 
validate the outcomes (Lipton 2018). Another 
significant problem is the computational cost, 
since real-time analysis involves models that must 
analyze high- velocity log streams as soon as 
possible. Overcoming these challenges is the 
crucial step in deploying the technologies of log 
analysis with the help of AI in massive 
encompassing critical missions. 
This paper’s objective is to discuss the cutting-edge 
area of AI-based anomaly detection in software 
logs, with specific focus on the applications of an 
intelligent fault diagnosis and self-healing systems. 
We then discuss the state-of-the-art approaches for 
traditional and machine learning approaches for 
log anomaly detection, advantages and 
disadvantages. Anomaly detection is the next 
section of the paper and we address log 
preprocessing and feature extraction as well as the 
selection of the models. The proposed approach 
is thus used on real-world log 
datasets to show its ability to flag the anomalies 
and to invoke self-repair processes. In the end, we 
consider the prospects of using AI in log analysis 
and estimate the directions for its further 
enhancement with regard to the model quality, 
interpretability, and time/storage complexity. 
Employing machine learning techniques in 
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anomaly detection shifts an organization from a 
repair mentality where they only repair faulty 
systems to an orderly approach of system 
management thereby cutting down on the systems’ 
downtime and enhancing the reliability of the 
overall software. Another way that improves the 
system resilience is the building of self healing 
qualities that provide the means for the program 
to self-diagnose and recover from existing faults. 
The advancements in the AI technologies will 
greatly enhance the utilization of log analysis 
software through increasing the levels of intelligent 
control and automotive maintenance in the 
future. 
 
2. Literature Review 
2.1 Traditional Approaches to Anomaly 
Detection in Software Logs 
Detecting an anomaly in the software logs has 
always been an important step in software 
monitoring and assessment of system reliability. 
Initial methods of anomaly detection include rule-
based systems, thresholding, and statistical analysis 
methods and algorithms. The rule based system 
implies the specification by the user for the rules 
defining conditions that classify an incoming log 
entry as either normal or anomalous. Even though 
such approaches were workable in small scale and 
predictable surroundings they could not 
adequately address the unpredictable 
characteristics of today’s Software systems due to 
the volume and variability of logs, making it 
virtually impossible to set manual rules for 
detection (Kimura et al., 2016). 
Statistical methods for anomaly detection 
appeared to be a more adaptive approach to the 
problem using probability models and 
distribution-based anomaly detection (Xu et al., 
2016). Statistical tools including Principal 
Component Analysis (PCA), Markov models,and 
Hidden Markov Models (HMM) were used to 
identify the disparities in the variation 
patterns (Wang et al., 2017). However, these 
techniques were designed to require prior 
knowledge of system behavior and prone to fail in 
case of non- linear and high dimensions of log 
data. Furthermore, static methods based on 

statistical models also faced the problem of 
employing anomaly detection in real time as it did 
not change with the dynamic behavior of the 
software and was not efficient with multiple log 
sequences (Liu et al., 2018)(Ijaz, M. K., 2023) 
Other methods including k-means and 
DBSCAN were also used in the clustering of 
logs with the objective of detecting anomaly 
classes that do not require labeling of the logs 
(Guan et al., 2019b). Although they
 showed promising
 results in discovering new 
anomalies, clustering-based methods had the 
problem of high time complexity and 
performance deterioration on large log datasets 
which made them less scalable (Sun et al., 2020). 
As software logs increased in size and the variety of 
data sources expanded, these basic approaches 
were no longer sufficient, and researchers began 
applying AI- based methods for manufacturing 
anomalies. 
 
2.2 Machine Learning-Based Anomaly 
Detection in Logs 
Machine learning has brought a new era on how 
to handle and analyze anomalies in software logs. 
Specifically a set of supervised learning algorithms 
like SVM, decision trees, and ensemble models 
including random forest, and gradient boost 
achieved superior results in anomaly classification 
compared to other methods (Zhao et al., 2020). 
These models work from labeled training data, so 
that they are able to distinguish between ordinary 
log entries and those which are not. But the biggest 
problem is that labelled log data is scarce due to 
the low frequency instances of anomalies, and 
labelling them by hand is tedious and prone to 
errors (Raza, A., 2021) 
For example, unsupervised learning methods were 
used in the past for their advantage in detecting 
anomalies of unknown classes. Autoencoder, a 
type of neural network commonly used for 
dimensionality reduction and feature learning, has 
been applied often in log-based anomaly detection 
(Huang et al., 2019). These models are designed 
to learn normal 
log sequences and the irregularities from 

https://portal.issn.org/resource/ISSN/3106-8006
https://portal.issn.org/resource/ISSN/3106-7999


 INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH 
 ISSN: 3106-8006 | 3106-7999 
 Volume 2, Issue 2, 2025   

engineeringresearch.net                                | Shah & Iqbal, 2025 | Page 14 

 

normative trends are identified by the models. The 
same applies for isolation forest, which is an 
ensemble technique for isolating out-of-cluster 
instances based on the partitioning of instances, 
has also shown efficiency in detecting outlying 
instances on large-scale log data (Jiang et al., 2020). 
Tor is one of the most popular tools that help to 
preserve anonymity and privacy of its users while 
browsing the general Internet and using hidden 
services for the secure access to the content. 
Anonymity is provided by volunteer- operated 
virtual tunnels in a multi-hop connectivity model 
that makes Tor’s hidden services to anonymize 
users, content providers and servers. However, 
recent research has revealed that there are 
inconsistencies in the connection process of Tor 
HS that can undermine the anonymity of the user 
and reveal the content of the site, despite the use 
of encryption, through website fingerprinting. (H 
Ali, M Iqbal, MA Javed, SFM Naqvi, MM Aziz, M 
Ahmad, 2023) 
Other techniques that have also been used in 
anomaly discovery of software logs include One-Class 
SVMs and density-based techniques such as GMM 
have also been used (Tan et al., 2022). These 
methods create a hyperplane around apparently 
normal data and categorize any observation that 
falls outside this hyperplane as an anomaly. 
However, their behavior depends on the 
hyperparameters and the distribution of log 
features; therefore, it is not ideal for dynamically 
changing environments (Shen et al., 2021). 
 
2.3 Deep Learning for Log Anomaly 
Detection Deep learning has greatly boosted 
anomaly discovery by allowing automation on 
feature learning for sequence data. RNNs and 
LSTM, GRU are widely used to capture 
sequential log patterns(Fang et al., 2021). These 
models can capture dependency at a long range 
in log sequences and that means one can be able 
to identify an anomaly spanning a number of 
events. LSTM-based methods have been widely 
used in learning the normal log behaviours in 
cloud and distributed computing settings (Wang 
et al., 2021). Recently, there have been
 attempts to use transformer-

based architectures, like BERT and 
GPT, for log anomaly detection by using attention 
mechanisms able to capture contextual relations 
within log entries (Zeng et al., 2022). These models 
have provided better results in terms of analyzing 
logs which are used to gain meaningful 
representation in order to identify anomalies in 
complex software systems. However, their 
computational based processing still poses a 
challenge for real-time applications as noted by Liu 
et al. (2023). 
Other research using CNN has also been 
conducted in log anomaly detection particularly 
on structured logs (Zhao et al., 2021). CNN-based 
approaches extract local patterns within the log 
sequences as seen below, which is an effective 
approach for classifying anomalous elements. 
Although CNNs provide a fast time of inference, 
these networks lack the capability of capturing 
long-range dependencies, which makes them 
rather unsuitable for analyzing highly sequential 
log data (Naseer, S., 2018, November) 
 
2.4 Self-Supervised and Contrastive 
Learning for Log Analysis 
Due to limited availability of labeled log data, self- 
supervised learning has gained much attention. 
Self- supervision means that models
 acquire representations from 
unlabelled data through pretext tasks such as next 
event prediction, masked token prediction and 
contrastive learning (Guo et al., 2022). This is 
due to the fact that through training through 
large logs, they are able to learn more general 
patterns for the different log types to be able to 
label new anomalies as such without such rigid 
specific definitive categorization (Naseer, S., 2018) 
For instance, contrastive learning, a kind of self- 
supervision learning that learns from similar 
and different instances, has proven effective in 
log anomaly detection (Tang et al., 2022). 
Other methods like SimCLR and MoCo have 
been extended to be used for log-based tasks to 
enhance the ability of models to learn 
discriminative features without necessarily having 
to label them (Chen et al., 2023). Thus, the 
utilization of contrastive learning has proven to 

https://portal.issn.org/resource/ISSN/3106-8006
https://portal.issn.org/resource/ISSN/3106-7999


 INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH 
 ISSN: 3106-8006 | 3106-7999 
 Volume 2, Issue 2, 2025   

engineeringresearch.net                                | Shah & Iqbal, 2025 | Page 15 

 

enhance detection of such anomalies in complex 
and dynamic software contexts. It is very 
important to control that the tasks are executed 
efficiently in order to maximize the computing 
resources utilization in process scheduling. Many 
algorithms are available for task scheduling to 
achieve optimal and efficient use of computing 
resources. (M Iqbal, MU Shafiq, S Khan, S 
Alahmari, Z Ullah, 2024) 
 
2.5 Self-Healing Systems and Automated 
Fault Recovery 
Anomaly detection is one of the kinds of proactive 
software maintenance; self-correction can help the 
software to restore functioning on its own. 
Automated self-repair uses AI for detection of 
anomalies that cause a service failure and it could 
prompt service restart, resource rebalancing or 
software update (Park et al., 2021). Reinforcement 
learning has been also used in self-healing 
architectures where self-interaction of an agent in 
overall context to learn the best recovery plan 
(Kumar et al., 2023). 
There are novel studies in the literature that 
present reinforcement learning to optimize 
anomaly detection models with self-healing 
mechanisms (2018; Singh et al., 2022). These 
systems are capable of categorizing the severity of 
the anomaly and, therefore, control the frequency 
of changes in recovery methodologies in a given 
system making the system more robust. there is also 
an integration of self-healing with the help of rule-
based heuristics supported with sophisticated AI 
that has provided a great positive impact of 
enhancing the fault tolerance levels in large-scale 
distributed systems (Yuan et al., 2023). 
Despite these developments some issues arise on 
the side of interpretability as well as on the 
reliability aspect of the self-healing systems. Many 
AI-driven models are black-box systems, which 
work well but are not easily explainable, thus, it is 
challenging for system administrators to confirm 
the corrective actions taken (Zhang et al., 2023). 
The future work will further develop the methods 
of increasing the visibility of self-healing 
mechanisms along with the ability to 
accommodate the new environments in which the 

software is to be executed (Yerubayeva, A., 2022, 
November) 
Recent developments in the field of anomaly 
identification have escalated from basic rule-based 
and statistical techniques to more sophisticated 
approaches involving machine learning and deep 
learning. Although the supervised and 
unsupervised learning algorithms have increased 
the detection rate to a great extent, the self-
supervised and contrastive learning has also 
simultaneously increased the flexibility of the AI-
based log analysis. Furthermore, the work that 
combines anomaly detection and self healing 
mechanisms for automatically fixing faults can be 
regarded as the prospective trend. However, some 
issues remain with the models such as 
interpretability of the models, speed and the 
ability of the models to adapt on the fly. Mitigating 
these issues will be critical in enabling the 
deployment of AI-based anomaly detection and 
self-healing systems in high-impact use cases. 
 
3. Methodology 
3.1 Data Collection and Preprocessing 
The first process to be followed in developing an 
anomaly detection system for software logs is data 
acquisition. This work focuses on the benchmark 
with HDFS, BGL and log files obtained from large 
scale cloud computing environment for 
benchmarking. Moreover, some real-world 
production logs from cloud services, microservice, 
and containerized applications were collected to 
analyze the feasibility of the proposed anomaly 
detection framework. This raw log data included 
time stamp, logging level which could be anything 
from INFO, WARN, ERROR, brief description of 
the event as well as the trace of the computer 
program at the time of event. Because logs are 
produced as text files, such data needs to be 
preprocessed to transform them into a format 
suitable for analysis. 
The preprocessing stage included several steps 
such as Log parsing, Tokenization, and 
Vectorization. Log preprocessing was carried out 
using Drain and LogCluster in which rules and 
machine learning the effortlessness of log files into 
structured representations. First, it is tokenization 
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which is used to split the log messages into words, 
phrases or sequences in order to extract features. 
Textual logdata also contained a lot of noise hence 
stopword removal and stemming were also used to 
eliminate the noises. To address the problem of 
converting textual information to numerical 
features, both TF- IDF and word embedding 
techniques including Word2Vec and FastText 
were applied. Further, log sequences were 
represented by using event templates and 
positional embeddings being useful for 
maintaining dependencies of the events that log 
comprise of. 
 
3.2 Feature Engineering and 
Representation Learning 
The process of successful anomaly detection 
depends on the identification of the right features 
that are able to capture the nature of logs. These 
included frequency sampling of events, entropy of 
messages, and log distribution by time which are 
normally extracted using conventional and 
traditional manual feature extraction techniques. 
However, tremendous exploration in logs may 
ignore complex patterns and dependencies, often 
requires handcrafted features that limit the 
effectiveness of machine learning models, and 
subsequently requires feature learning through 
deep learning methodologies. 
Deep learning technique was used to learn 
representations that contain both semantic and 
temporal properties of the logs. Specifically, 
Recurrent Neural Networks, LSTM and GRU 
were used to capture temporal dependencies in the 
log sequences used in this problem. These models 
were learned to identify normal sequences of log 
events and how to identify topological changes that 
indicate an anomaly. Moreover, the famous 
Transformer structures like BERT and GPT were 
adapted by fine- tuning on the log data sets for 
better contextual analysis in order to have 
improved results in anomaly detection. Self-
attention in the Transformer models enabled the 
appreciation of long-range dependencies in the 
logs data as opposed to other methods such as 
RNNs or CNNs. 
 

3.3 Machine Learning and Deep Learning 
Models for Anomaly Detection 
The anomaly detection framework involved 
integration of supervised, unsupervised, and 
self- 
supervised machine learning models. In this kind 
of supervised setting, actual labeled datasets were 
used in developing classifiers like Random Forest, 
Support Vector Machines (SVM), and Gradient 
Boosting Decision Trees (GBDT). Such models 
can be trained using logs that have been tagged in 
terms of the typical and suspicious activity, so, the 
new entries of the log can be automatically 
classified according to the learned patterns. 
However, because annotated samples of anomalies 
are relatively rare in practice, traditional 
supervised learning methods were not commonly 
used. 
As a result, to overcome the problem of lack of 
labeled data, unsupervised learning models were 
used in the process of shooting identification. 
Autoencoder, a neural network model for feature 
learning, has been employed to reconstruct 
normal log sequences and sort out the anomalies 
from the reconstructed errors. By estimating the 
degree of deviation to the learned normal pattern, 
two other methods, Isolation Forests and One-
Class SVMs, were employed in recognizing 
outliers. Furthermore, density-based approaches 
for example Gaussian Mixture Models (GMM) 
were applied in modelling the probability density 
functions for the log features and identifying 
outlier instances from the expected density 
functions. 
Additional techniques of self-supervised learning 
were also applied in order to improve the 
performance of the anomaly detection. Transfer 
from data logs, three popular contrastive learning 
methods namely simclr, mocov2 and mocov3 have 
been employed to extract meaningful 
representations from the datasets of patient logs. 
Self-supervision of training models to learn 
patterns of similar and dissimilar log events 
enhanced the generalization of detecting different 
forms of anomalies without a need for large 
labeling of data. The combination of pretraining 
based on self-supervision with fine-tuned anomaly 
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detection models enhanced robustness and their 
performance. 
 
3.4 Root Cause Analysis and Anomaly 
Explanation In addition to alert generation it is 
mandatory to offer alarm explanation and root 
cause analysis to help the system operator to 
diagnose faults. This 
research also aimed to apply the techniques of 
explainable AI to improve the interpretability of 
the results. The two methods used for explanation 
of the machine learning models were SHAP 
(SHapley Additive exPlanations) and LIME (Local 
Interpretable Model-agnostic Explanations) for 
determining which log features were key to the 
classification of an anomaly. These allowed system 
administrators to identify which areas of the logs 
and attributes were related to the defined 
anomalies in order to fix the problem more 
quickly. 
For the deep learning-based anomaly detection, 
the heatmaps from Transformer models were used 
to identify the specific log event sequences that 
elicited an anomaly signal. Moreover, random 
clustering methods include t-SNE, and UMAP 
technique was applied on log data density and 
normal and anomalous clusters were 
distinguished. Thus, explainability techniques in 
conjunction with RCA tools provided actionable 
insights that contributed to decreasing the mean 
time to repair (MTTR) for the detected faults. 
 
3.5 Implementation of Self-Healing 
Mechanisms The last steps of the planned 
framework were to incorporate automatic 
recovery mechanisms to rectify the faults. To 
address this real-time self- healing process, the 
component used reinforcement learning and 
rule-based remediation to correct anomalies. 
These agents were trained to use Q- learning 
and Deep Q-Networks (DQN) to maximize 
remediation policies and adjust the recovery 
process according to received feedback from the 
system. Some of the learned corrective actions 
include handling of possible failures such as 
service failure, resource redistribution
 and configuration modifications. 

In addition, there were more conventional rule-
based automation scripts that were employed with 
AI initiations to the remediation processes. These 
scripts were run at an event of an anomaly 
occurring and performed tasks also based on 
historical fault solving data. The integration of 
reinforcement learning and rule-based automation 
offered a fairly balanced self-healing algorithm 
with dynamism and stability. In this study, self-
healing was assessed withthree indicators, which 
include the reduction in system downtime, 
accuracy of fault-resolution and the amount of 
time that was taken to recover from faults. 
 
3.6 Model Evaluation and Performance 
Metrics When ranking the anomaly detection 
models, multiple factors were used, such as accuracy 
measures like precision, recall rates, F1-scores, and 
curve areas under the receiver operating 
characteristic (AU- ROC). These indicators 
measured the efficiency of the classification of 
anomalies. Precision and recall were used 
especially in classifying false positives and false 
negatives of the data set and also to reduce false 
alarms while at the same time capturing actual 
outliers. 
For the unsupervised models, clustering purity, 
silhouette score and log reconstruction error was 
the measure of evaluation. To assess the efficiency 
of the self-healing mechanisms, the time of the 
system’s return to its functionality before and after 
the incorporation of AI automation was taken into 
consideration. The effect of the proposed 
framework was evaluated by comparing the overall 
reduction observed in an MTTD and MTTR. 
 
3.7 Experimental Setup and Deployment 
Anomaly detection system was then proposed, 
designed and deployed as a system in a live software 
monitoring system. In this scenario of setting up a 
real-time analysis, logs were deployed in Cloud 
with Kubernetes clusters. Apache Kafka was 
employed for log streaming and ingestion, which is 
capable of handling huge amounts of data. The 
ML models were further deployed as micro-service 
enabling them to easily integrate with monitoring 
services such as Prometheus, Grafana among 
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others. 
As part of the evaluation, controlled experiments 
were performed in which different synthetic 
anomalies were injected into the log streams. Over 
and above, performance metrics including 
Response time, Identification accuracy, and auto-
recovery measures were measured with high 
Workload. These experiments proved how useful 
it is to use AI for detecting anomalies that point 
to a fault, to initiate 
predefined recovery measures and prevent the 
breakdown of a system. 
 
4. Results 
4.1 Model Performance on Anomaly 
Detection 

A comparison of different machine learning 
models for anomaly detection in software logs 
shows that there are notable differences in 
different evaluation criteria concerning precision, 
recall, F1-score AUC- ROC, and time taken to 
train the models as well as 
time taken to make predictions. In general, 
Transformer-based models outperformed all other 
models with the F1-score of 0.92, while LSTM 
models achieved the F1-score of 0.90. 
Autoencoders performed remarkably, with an F1-
score estimated to be 0.86. Compared to the 
baselines, Random Forest and Support Vector 
Machines (SVM) struggled and displayed lower 
recall values, which meant that they had higher 
false negative rates. 

Table 1: Model Performance Metrics on Log Anomaly Detection 
Model Precision Recall F1-score AUC-ROC Training Time (s) Inference 

Time (ms) 
Random 
Forest 

0.85 0.78 0.81 0.89 12.5 1.2 

SVM 0.81 0.75 0.78 0.85 10.8 1.5 
LSTM 0.92 0.89 0.90 0.94 35.2 2.8 
Autoencoder 
Isolation Forest 
Transformer 

0.88 
0.84 
 
0.94 

0.85 
0.79 
 
0.91 

0.86 0.91 28.9 
15.4 
 
42.3 

2.3 
1.7 
 
3.5 

0.81 0.87 

0.92 0.96 

 
Figure 1 F1-score Comparison of Anomaly Detection Models 
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In order to visualize these results, a bar chart was 
developed as shown in the following Figure 1 to 
compare different models of anomaly detection in 
terms of F1-score. From the figure , it is evident 
that deep learning techniques, most recent 
transformative 
and LSTMs, are more effective than the traditional 
machine learning algorithms in detecting 
anomalies in log data because of its capability to 
take into account sequential patterns. Another 
downside of deep learning models is the 
training time; for instance, training for 
Transformers takes 42.3 sec while for Random 
Forest, it only takes 12.5 sec. Nevertheless, the 
enhanced accuracy of deep learning models gives a 
rationale for their computational time in sizable 
anomaly detection applications. 

4.2 Performance Across Different Datasets 
Thus, the effectiveness of the models developed 
here was evaluated on HDFS logs, BGL logs, cloud 
logs, container logs, and custom logs datasets. As 
also presented  in  table  2,  the  F1-scores  of  
the 
Transformer model were consistently higher than 
those of all the other algorithms varying from 0.88 
to 
0.92. Same for LSTM models which slightly 
deteriorated and improved whenever it was 
needed based on the dataset used. Isolation Forest 
was the lowest-performing model, particularly with 
custom generated logs: generalizing to different 
contexts across the board, it achieved an overall 
F1-score of 0.77. 
 

Table 2: Performance Evaluation Across Different Datasets 
Dataset LSTM F1- 

score 
Autoencoder F1- 
score 

Transformer F1- 
score 

Isolation Forest F1- 
score 

HDFS Logs 0.90 0.88 0.92 0.81 
BGL Logs 0.89 0.87 0.91 0.80 
Cloud Logs 0.87 0.85 0.89 0.78 
Container 0.88 0.86 0.90 0.79 

Logs     
Custom Logs 0.85 0.82 0.88 0.77 
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Figure 2 Radar Chart: Model Performance 

Comparison 
The F1-score performance evaluation for datasets 
is further described in the following figure 2, to 
show the F1-score of several models on several 
datasets. Analyzing the presented graph, it is 
possible to conclude that deep learning models, 
especially the models built on Transformer, are 
more suitable for changes in the log structure 
compared to usual methods of anomaly detection. 
These findings indicate that it is worthwhile for 
organizations using AI-based log monitoring tools 
and services to pay more attention to AI, or deep 
learning techniques when dealing with dynamic 
log data. 
 

4.3 Feature Extraction Effectiveness in Log 

Analysis 
Feature extraction is among the most crucial 
functions in the process of log, telemetry and other 
types of anomaly detection because it provides a 
way of converting text log data into machine 
understandable and quantifiable formats. As 
shown in Table 3, four feature extraction 
techniques including TF-IDF, Word2Vec, Fasttext 
and Logcluster, and BERT embeddings were 
considered for the evaluation of their effect on the 
performance of the anomaly detection system. 
Thus, we are only predominantly witnessing 
BERT embeddings outcompeting conventional 
techniques, such as TF- IDF with F1 score of 0.77, 
LogCluster of 0.80. 
 

Table 3: Comparison of Feature Extraction Techniques 
Feature Extraction Method Avg Precision Avg Recall Avg F1-score 
TF-IDF 0.80 0.75 0.77 

Word2Vec 0.85 0.80 0.82 
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FastText 0.86 0.82 0.84 

LogCluster 0.82 0.78 0.80 

BERT Embeddings 0.91 0.89 0.90 

 
Figure 3 Feature Extraction Effectiveness in Log Analysis 

As depicted in Figure 3 below, the percentage 
contribution of each feature extraction technique 
towards the improvement of the log analysis is 
presented in a pie chart. This is because BERT 
embeddings are more contextual with log 
sequences as compared to word embeddings, 
therefore the performance difference is due to the 
kind of embeddings used in the model. 
 
4.4 Effectiveness of Self-Healing
 Systems in Reducing Downtime 
Self-sustaining systems include automation of the 
anomaly detection process with an immediate 
attempt as the remedy for the problems that need 
to be solved to prevent a breakdown in the system. 
Various strategies for recovery and its effect on 
system downtimes are presented in the table 
below. The results hence reveal that the hybrid AI 
models were the most effective in achieving the 
shortest recovery time of the system with an overall 
improved downtime by 68.2%. Previous rule-based 
methods of recovery were less effective with 
restoring the time lost with a mere 22.3 % as 
opposed to manual intervention approach being 

least efficient. 
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Table 4: Self-Healing System Effectiveness in Reducing Downtime 

Recovery Strategy Avg Downtime Before 
(mins) 

Avg Downtime After 
(mins) 

Downtime Reduction 
(%) 

Rule-Based 45.2 35.1 22.3 
Reinforcement 50.3 22.4 55.5 
Learning    
Hybrid AI 48.1 15.3 68.2 
Manual Intervention 60.7 50.2 17.3 

 

Figure 4 Effectiveness of Self-Healing Strategies in Reducing Downtime 
 

Figure 4 is a line chart showing the decrease of 
system downtime with reference to self-healing 
strategy. The dramatic reduction in system 
downtime in cases after the application of the 
hybrid AI and reinforcement learning presents 
viable opportunities in applying AI-lead 
automation in strengthening 
system reliability. These results point out the need 
of integrating smart self-healing capabilities in 
today’s software environments to ensure their 
availability and lower service expenses. 

4.5 False Positive and False Negative Rates 
In evaluating anomaly detection models there is a 
need to ensure that false positive values as well as 
false negative values are kept to the lowest level. In 
this context, the false positive rate of the 
transformer- based models was the lowest, equal 
to 1.2 percent, 
and the false negative rate, equal to 1.5 percent, 
also could be mentioned. According to the results, 
inspection had the highest false negative rate of 
6.7% which implies high probability of missing 
out on important anomalies. 

Table 5: False Positive and False Negative Rates 
Model False Positive Rate (%) False Negative Rate (%) 
Random Forest 3.2 4.1 
SVM 5.1 6.7 
LSTM 1.8 2.2 
Autoencoder 2.4 3.1 
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Isolation Forest 4.3 5.0 
Transformer 1.2 1.5 

Figure 5 False Positive Vs. False Negative Rates In Anomaly Detection Models 

Figure 5 is a type of graph called scatter plot which 
shows false positives and false negatives of every 
model. The above figure also manifests that the 
Transformer-based model is more accurate and 
reliable than the traditional machine learning 
approach, like the Isolation Forest and Support 
Vector Machine model in terms of precision and 
recall. These are due to the proper choice of the 
AI model to be used for the specific systems as well 
as the fact that high FNs may lead to more 
undetected system failures. 
4.6 Logs Analysis Performance according to 
different Techniques 
Log parsing is especially for the function of 

preprocessing the log data before the occurrence 
of the anomaly detection process. Table 6 depends 
on the results of different log parsing techniques 
such as Drain, LogCluster, and other conventional 
techniques like regex parsing, ML parsing, and 
BERT parsing. Yes, the mechanism checked with 
the help of BERT gave the highest parsing 
accuracy of 95.1% but needed more time, 5 ms per 
log record. On the other hand, regex based parsing 
had the lowest accuracy of 85.4% but this method 
was the fastest and took 2.8 ms per log entry. 
 
 

Table 6: Log Parsing Performance for Different Methods 
Log Parsing Method Parsing Accuracy (%) Avg Processing Time (ms) 
Drain 91.5 3.5 
LogCluster 89.7 4.1 
Regex-Based 85.4 2.8 
ML-Based 92.2 3.2 
BERT 95.1 5.0 

 
 
 
 

 
 
 
 

Figure 6 Log Parsing Accuracy Comparison 
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Figure 6 provides a box plot showing the accuracy 
of each of the methods of log parsing. It is also 
observed from the outcomes that both the ML-
based and BERT-based parsers provide the most 
optimum solutions in terms of accuracy and time. 
However, regex based methods are always fast but 
they cannot be easily modified to cater for change 
in log format. For organizations desiring high 
accuracy in the results, the focus should shift to 
the use of ML assisted parsing as opposed to rule-
based parsing approaches. 
4.7 Resource Utilization of Anomaly 
Detection Models 
Efficiency of resources is a significant aspect that 
needs to be considered when deploying artificial 

intelligence models for usage in production 
processes. Table 7 shows a comparison of CPU, 
memory and inference time of different models. 
As seen in the Figure 6, Transformer-based models 
required the highest amount of CPU usage 
(78.5%) and memory usage (4.5 GB), which were 
both high- level computational resources. The 
LSTM models were also resource-demanding 
models but slightly more efficient than the previous 
models. Specifically, Random Forest and SVM had 
relatively low results in the CPU and memory; 
however they had high 
inference latency as compared to deep learning
 
models. 

Table 7: Resource Utilization During Anomaly Detection 
Model CPU Usage (%) Memory Usage (GB) Inference Latency (ms) 
Random Forest 45.2 1.5 1.2 
SVM 50.1 1.2 1.5 
LSTM 65.3 2.8 2.8 
Autoencoder 70.2 3.1 2.3 
Isolation Forest 55.4 2.3 1.7 
Transformer 78.5 4.5 3.5 

  
Figure 7 Resource Utilization Comparison 
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A heatmap has been prepared in Figure 5 showing 
trends in resource usage across the models. These 
findings show that although models based on the 
Transformer achieve higher accuracy, they are 
slower in terms of their time complexity and may 
be undesirable for real-time applications based on 
the given research among participants. This 
highlights that in order to reach an acceptable level 
of accuracy, organizations depend on much more 
than mere computation and as such, 
computational efficiency has to be balanced 
according to the capability of the organizations’ 
infrastructure. 

4.8 Anomaly Detection Success Rates in 
Different Scenarios 
The last efficiency assessment compared the ability 
of the anomaly detection models to achieve success 
in different failure scenarios, such as cloud system 
failures, distributed databases, containers, 
network latency, and disk I/O. Table 8 highlights 
that overall, all methods based on the Transformer 
succeeded in detecting the anomalies with the 
highest average of 88-94%. LSTM models were 
ranked second with the success rate of from 85% 
to 92%. For the disk I/O bottleneck analysis, 
Isolation Forest achieved the overall lowest success 
rates, specifically, at 77%. 

Table 8: Anomaly Detection Success Rates Across Different Scenarios 
Scenario LSTM Success 

Rate (%) 
Autoencoder Success 
Rate (%) 

Transformer Success 
Rate (%) 

Isolation Forest 
Success Rate (%) 

Cloud System 
Failure 

92 88 94 81 

Distributed DB 
Crash 

89 87 91 80 

Container Outage 87 85 89 78 
Network Latency 
Spike 

88 86 90 79 

Disk I/O 
Bottleneck 

85 82 88 77 

  
Figure 8 Anomaly Detection Success Rates Across Different Scenarios 
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Figure 7 shows a bar chart demonstrating success 
ratios for various scenarios. Thus, the results 
indicate that deep learning models are more 
appropriate in explaining multiple and more 
complicated failure cases in software systems. 
Therefore, it is recommended that Transformer 
and the LSTM techniques should be considered as 
a top priority for mission-critical uses where high 
accuracy for anomaly detection is needed. 
These findings are a good attempt in providing an 
understanding of the automated anomaly 
detection and self-healing system of software logs 
using AI. The results also show that in comparison 
with usual machine learning methods, deep 
learning techniques, especially transformer and 
LSTM-based approaches, achieve enhanced 
precision, recall, and overall rates of anomaly 
detection tasks. Moreover, the implementation of 
a self-violent self- healing system makes it possible 
to fix itself to troubleshoot 
and minimize system failures, which add to the 
reliability of the software. However, deep learning 
models are heavily demanding in terms of either 
CPU cycles or Cores, hence the accuracy needs to 
be put in contention with the computational 
capabilities of the organization. From this 
research, certain recommendations can be made 

toward improving the generality of AI Driven Log 
Monitoring systems in contemporary software 
systems. 
 
5. Discussion 
The outcomes of this study reveal that the 
proposed approach of AI-based anomaly detection 
is highly effective compared to rule- and statistic-
based approaches for analyzing software logs. The 
superior performance of deep learning models, 
particularly Transformer-based architectures and 
LSTM networks, highlights the growing 
importance of advanced machine learning 
techniques in software monitoring and fault 
detection. Self-healing mechanisms are another 
area that proves the effectiveness of AI in making 
systems less susceptible to stoppages in the 
contemporary computerized world. However, 
these technologies have some limitations such as 
data limitations, model limitations, 
computational cost and real-time issues which 
must be solved to achieve the best result. 
 
5.1 Superiority of Deep Learning for Log-
Based Anomaly Detection 
The analysis of the performance of various models 
in this study shows that deep learning-based 
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models for anomaly detection are much more 
accurate than machine learning models. 
Transformer models had higher precision, recall 
and F1-score metrics, thus proved to be the best 
option to find anomalous patterns in log data set. 
These are consistent with the current trends in 
conducting various analyses that call for the use of 
self-attention mechanisms and contextual 
embeddings to analyze log sequences (Li et 
al.,2023; Zhang et al., 2023). Compared with 
traditional approaches, deep learning techniques 
are capable of learning features from log data in a 
hierarchical manner, which greatly alleviates the 
need to extract features from scratch (Cheng et al., 
2022). 
Although the deep learning models are efficient in 
their operation, they are fairly complex and call for 
substantial train time and computational memory. 
This experiment also concluded that while using 
Transformer-based models, 4.5 GB memory and 
78.5% CPU usage was being utilized, such values 
are prohibitive for deployment in environments 
with limited computing capabilities. Previous 
studies have suggested several methods to solve this 
problem, such as optimizing the network 
structures and using quantization methods to 
decrease the amount of computations needed 
(Kim et al., 2022; Wang et al., 2021). Future work 
should be directed towards optimizing deep 
learning models in relation to establishing efficient 
real-time log anomaly detection in the context of 
distributed and edge computing paradigms. 
 
5.2 Challenges of Data Imbalance and Labeled 
Log Data 
This would pose a huge problem when it comes to 
anomaly detection because anomalies are much far 
and in between compared to normal log events. 
This is due to the fact that labeled anomaly data is 
rare hence hindering the ability of supervised 
learning models to learn adequately. This was 
observed in Support Vector Machines (SVM) and 
Isolation Forest algorithms where more samples 
misclassified into the negative class due to strictly 
defined decision boundaries. It has been found 
that the use of oversampling, synthetic data, and 
semi-supervised learning strategies minimizes the 

effect of data imbalance (Wang et al., 2022, Sun et 
al., 2023, Liu et al., 2022). 
Auto learning techniques have recently been 
proposed as a way to learn a model which does not 
rely on labeled examples (Zhou et al., 2023). These 
methods help to train anomaly detection models 
from the log sequences without labels to enhance 
the performance of the models in detecting new 
failures that were not trained by the models. 
Recent papers show promise of contrastive 
learning for anomaly detection where the model is 
trained to spot the difference between normal 
and anomalous logs without the need for 
annotations (Chen et al., 2023; Yu et al., 2022). 
Consequently, this research verified self-supervised 
learning allowed for higher success rates of 
anomaly detection in various and dynamic log 
contexts. 
 
5.3 The Need for Explainability and 
Interpretability 
One limitation of deep learning for anomaly 
detection is that the detection model often lacks a 
notation that can be explained, which poses a 
major problem since system administrators cannot 
trust the model if they cannot validate its 
predictions. While traditional log monitoring 
methods offer direct reasons for developing rules 
found in the log file, deep learning models are lack 
explanation, functioning as black box analysis. As 
mentioned in the prior research, this issue has 
been identified, and the majority of the scholars 
have stressed the importance of explainable AI 
(XAI) approaches in anomaly detection (Gao et al., 
2023; Huang et al., 2022). 
To increase the interpretability of deep learning 
models, SHAP and LIME were employed in the 
current study. These techniques identified the 
most significant log events that would significantly 
contribute to the anomaly predictions and gave 
chance to the administrators to validate the 
flagged anomalies efficiently. However, these 
methods are helpful in generating insights but 
they add more computation time and real-time 
interpretability becomes an issue. Further research 
should be aimed at the improvement of DL-based 
AD interpretability while keeping the approach 
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light-weight. 
 
5.4 The Role of Self-Healing Systems in 
Enhancing Software Resilience 
Self-healing is yet another enhancement in 
proactive fault remediation, which enables 
particular thrifty monitor systems to detect and 
rectify problematic situations before they turn out 
into recoverability models, which are a typical 
characteristic of AI-driven monitoring systems. 
Consequently, it established that the use of hybrid 
AI: reinforcement learning and rule-based 
automation, minimize system’s downtime by up 
to 68.2% thereby proving the 
effectiveness of AI remediation. These 
observations also align with the outcomes of other 
scholarly works—namely, that employing 
reinforcement learning-based self-healing 
mechanisms enhances failure recovery 
effectiveness and system availability (Park et al., 
2023; Tang et al., 2023). 
Nonetheless, self-healing mechanisms must be 
constantly adjusted in response to changes to 
suppress any interference that would generate 
excessive cascading overhead in the system. A 
weakness of reinforcement learning based self- 
healing is the possibility to categorize some 
anomalies, specifically the transient ones, as 
serious issues, and cause unnecessary instance 
restarts or resource redistribution (Zheng et al., 
2022). Further developments should be aimed at 
the adaptive self- healing policies that would 
differentiate between fatal and temporary failures; 
the self-healing approaches should not deteriorate 
the observed performance. 
 
5.5 Scalability and Deployment 
Considerations for Large-Scale Systems 
In large-scale cloud computing and distributed 
computing, scalability is one of the major issues on 
the realization of AI-based anomaly detection and 
self-healing. The findings of this work thereby 
pinpoint that although deep learning models offer 
great accuracy, these come within the cost of high 
computational demand for memory. Several 
recent works have discussed the use of federated 
learning in the context of anomaly detection, 

where models are trained cooperatively across 
multiple devices, thus minimizing the load on any 
single machine (Zhao et al., 2023; Feng et al., 
2022). 
One of the issues is real-time data analysis with log 
data, which implies the need for stream processing 
infrastructure. The specified work also utilized 
Apache Kafka along with Kubernetes-based 
microservices for log ingestion and for also 
Anomaly Detection &amp; Prevention to scale the 
architecture in the cloud environments. However, 
the current approaches using deep learning do not 
have high-throughput inference operations, 
making them impractical for use in real-time 
operations. Due to the features of the edge AI, 
it is imperative to 
advance research on model optimization methods 
and applied methods for real-time anomaly 
detection (Wang et al., 2023). 
 
5.6 Future Research Directions 
Therefore, even though the present work 
contributes important knowledge on AI for 
anomaly detection, it leaves few questions 
unanswered. Therefore, more research should be 
directed toward improving the deep learning 
models, specially in relation to knowledge 
distillation and model compression to minimize 
computational complexity. Moreover, the current 
state of explainability in AI-based anomaly 
detection must be enhanced by the production of 
further development of new deep learning 
explaining methods. 
Another interesting future research direction is 
the Multi-modal log analysis, which combines log 
data, system metrics, network traces, and 
application performance metrics to improve the 
accuracy of anomaly detection (Chen et al., 2023). 
Integration of dissimilar data types will help to 
design and deploy more effective and accurate 
anomaly detection models that would be more 
sensitive to changing conditions in software-based 
systems. 
Conclusion 
Deep learning, self-supervised learning, and self- 
healing mechanisms are also identified as playing 
a crucial part in the development of AI-based 
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anomaly detection. These technologies enhance 
the accuracy of anomaly detection as well as the 
efficiency of solving faults but some issues like 
evolving imbalance datasets, model explain-ability, 
high computational cost, and real-time 
computations are issues that need to be solved to 
improve the application of these technologies. 
Future works should concentrate on the 
development of efficient, explainable, and 
adaptive AI techniques for continuous and real-
time detection of faults and remedial actions in 
today’s software ecosystems. 
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